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Abstract-A simple expression is developed for the space-mean Nu (or Sh) for all Ra and Pr (or SC) 
in terms of the model of Churchill and Usagi. The development utilizes experimental values for Ra 
approaching zero and infinity, and the theoretical solutions obtained from laminar boundary-layer 
theory. The expression is applicable to uniform heating as well as to uniform wall temperature and for 
mass transfer and simultaneous heat and mass transfer. The correlation provides a basis for estimating 
transfer rates for non-Newtonian fluids and for inclined plates. Even simpler expressions are developed 
for restricted ranges ofconditions. The general and restricted expressions are compared with representative 
experimental data. The structure of the correlating equation shows why the common power-law-type 

equations cannot be successful over an extended range of Ra and Pr. 

NOMENCLATURE 

a, arbitrary exponent; 

A, dimensionless coefficient ; 
b, arbitrary exponent; 

c, dimensionless coefficient ; 
diffusivity [m’/s]; 

f”iPrj, d’ imensionless function of Pr in 
equation (2); 

F{m}, dimensionless function of power-law 

k, 
k’, 
I;‘, 

K 

m, 
6 
NU 
_’ 
NU, 
Pr, 
47 

Ra, 
Ra’, 

Ra*, 

SC, 

Sh, 
sil, 

T, 

x, 

Y* 
z. 

coefficient in equation (16); 
acceleration due to gravity [m/s’]; 

local heat-transfer coefficient [J/m* . s . “K]; 
mean heat-transfer coefficient over O-z 
[J/m’. s “K]; 
thermal conductivity [J/m. s . “K] ; 
local mass-transfer coefficient [s-l]; 
mean mass-transfer coefficient over O-z 

[s-l]; 
coefficient defined by equation (15) 
[kg/m-s2-m]; 

exponent defined by equation (15); 
exponent in equation (1); 
hz/k, local Nusselt number at z; 
AZ/k, mean Nusselt number over O-z; 
v/u, Prandtl number; 
heat flux density [J/m*-s]; 

g/?( T, - Tb)z3/va, Rayleigh number; 
gy(o, - wb)z3/v~, Rayleigh number for mass 
transfer; 

gfiqz4/kvu, modified Rayleigh number based 
on heat flux density; 
v/g, Schmidt number; 
k’z/s, local Sherwood number; 
IE’z/g, mean Sherwood number over O-z; 
temperature [“K]; 
independent variable [m]; 
dependent variable [ml; 
distance up plate [m]. 

Greek symbols 

a, thermal diffusivity [m*/s]; 

P, thermal coefficient of expansion [“K-l]; 

Y? dimensionless coefficient for expansion due 
to change in composition; 

a, mass fraction; 

v, kinematic viscosity [m*/s]; 
cp { Pr}, dimensionless function of Pr in 

equation (8); 

8, angle of inclination of the plate from the 

vertical; 

7, shear stress [kgjm-s*]. 

Subscripts 

b, bulk; 

s, surface; 

0, limiting behavior for small z; 

00, limiting behavior for large z. 

INTRODUCTION 

A VARIETY of theoretical expressions, graphical cor- 

relations and empirical equations have been developed 
to represent the coefficients for heat and mass transfer 

by free convection from vertical plates. However, the 
discrepancies between the expressions proposed for 
correlation and the various sets of experimental data 
have still not been completely resolved or explained. 
The experimental anomalies are apparently due in part 

to physical property variations and undefined differ- 
ences in the environment. The theoretical results are 
mostly limited to the intermediate range of Rayleigh 
number for which the postulates of laminar boundary- 
layer theory are applicable; a completely satisfactory 
theory has not been developed for either the diffusive 
regime (low Rayleigh numbers) or the turbulent regime 
(high Rayleigh numbers). The primary shortcoming of 
the empirical correlations is their failure to take into 
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proper account the uarying dependence on the Rayleigh 
and Prandtl (or Schmidt) numbers. 

indicates that n = 1 is a reasonable choice, yielding 

This paper presents simple but very general cor- 
relations for the space-mean value of the transfer rate 
for free convection. The correlations are developed 
wholly in terms of the model of Churchill and 
Usagi [lf: 

.1?“{r3 = y;(z) -t.y; {Zi (11 

and thus require appropriate expressions for the iimit- 
ing behavior for both large and small values of the 
independent variable a. 

Ede [Z] provides a thorough review of the literature 
for heat transfer through 1964. In the interest of brevity, 
correlations, theoretical solutions and experimental 
data since that date will not be reviewed or analyzed 
except insofar as they are directly relevant to the 
derivations herein. The correlation is first developed 
in terms of heat transfer from an isothermal plate. 
Uniform heating, mass transfer, simultaneous heat and 
mass transfer, non-Newtonian fluids and inclined plates 
are subsequently considered. 

LAMINAR REGIME 

Boundary-layer theory has been utilized to derive 
relationships of the form: 

Nu = Ra”4f{Prj (2) 

where f{Pr) represents a tabulation of values such as 
those summarized by Ede [2] for a number of values 
of Pr. Churchill and Usagi [I] derived an empirical 
expression in the form of equation (1) to provide a 
continuous approximation for these tabulated values 
ofj{Prj. This expression can be rewritten as follows 
in terms of 2JE; : 

?& = 06QR~“~/‘[l f (@492/P@” “1 419. (31 

Equation (3) represents the various computed values 
within 1 per cent from Pr = 0 to Pr = cc and is in 
general agreement for lo5 < Ra < 10’ with the widely 
scattered experimental values compiled by Ede [2]. 

Equation (2) and hence equation (3) would be 
expected to become invalid for Ra > 15” owing to the 
onset of turbulence and as Ra -+ 0 owing to thickening 
of the bounda~ layer relative to the distance from the 
starting edge of the plate. A generally accepted solution 
has not been derived for this latter regime. For pure 
conduction (Ra = 0) from an infinite strip % = 0, but - 
for a plate of finite dimensions Nu has a finite value. 
The experimental data of Saunders [S] indicate a hmit- 
ing value of approximately 068, probably due to edge 
effects. 

Utilizing 068 for yo {z> and the right side of equation 
(3) for yrn{zl in equation (1) yields the following test 
expression for the entire laminar regime: 

A test plot of representative experimental data [2-131 
in the form proposed by Churchiil and Usagi [I] 

Equation (5) is seen in Fig. 1 to provide a good 
representatjon for all Ra < IO9 while equation (3) is 
seen to be increasingly in error for Ra < 10”. 

LAMINAR PLUS TUR~~L~~ REGIME 

An asymptotic solution is not available for Ra -+ m, 
but Churchill [14] has asserted on the basis of dimen- 
sional analysis that 

Nu -+ ARa”3cp{Prj (6) 

where A is an empirical constant and qo(Pri is a 
function which approaches unity for Pr -+ cx) and is 
proportional to Pr113 for Pr -+ 0. Equations (5) and (6) 
could be combined in the form ofequation (If to obtain 
a test expression for ail Ra and Pr. However the 
limiting value of @68 proves to combine with equation 
(6) to produce a simpler and equally successful cor- 
relation. The resulting test expression is 

X? = Q68”+ [ARa”3yljPr)]“. (71 

Equation (7) provides a dependence of Nu on Ra for 
any positive ~rl which increases continuously from the 
zeroth power to the l/3-power as Ra increases. If 
equation (7) is to provide the same interrelationship 
between Ra and Pr in the laminar ~u~dary-layer 
regime as equation (5) it is necessary that: 

pp(Pr) = f[l ~(Q492/Pr)p!‘“]-4~P)4:3 

= El~(o.492iiPrr9!16]-16!27 (8) 

The expression resuhing from insertion of equation (8) 
in (7) also conforms to the asserted dependence for 
Pr*Oand ao asRa-+E. 

Bosworth [15) proposed an equation of the form of 
equation (7) with q{Pr} = 1.0 and n = l/2 for % for 
free convection from horizontal cylinders in air. Trial 
plots indicate that n = l/2 is a reasonable choice for 
the vertical plate as welt. The straight line with a slope 
of t/6 drawn in Fig. 2 through the same representative 
data as in Fig. I yields a value of A = 0.150 and hence 
the final correlation: 

This vafue of A is in reasonable accord with the value 
of AqofPr) = 0.10, hence A = 0.12, derived by Bayiey 
[16] for air and also with the value of 0.13 proposed 
by Kutateladze [17] for a correlation in the form of 
equation (6) for turbulent free convection from vertical 
plates, cylinders and spheres to a number of fluids. 

Equations (3) and (5) are plotted also in Fig. 2 for 
comparison and to indicate their limits of applicability. 
The undoubted superiority of equation (9) for Ra 3 199 
is somewhat obscured by the lack of data for truty high 
Ra, the scatter of the availabie data and the very con- 
densed scale of the ordinate 
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FIG. 1. Correlating equations for the laminar regime of isothermal, vertical plates. 
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FIG. 2. Comparison of correlating equations with experimental data for isothermal, vertical plates. 

INTERPRETATION 

Computed values of f{ Pr} and cp{Pr} for rep- 
resentative fluids are given in Table 1. The significant 
deviations for air and water from the limiting depen- 
dence for Pr + cc indicate why the customary em- 
pirical equations of the form of equation (2) with 
f(Pr} = 1.0 and equation (6) with cp{Pr} = 1.0 have 
not proven satisfactory for a variety of fluids with a 
wide range of Pr. Table 1 also indicates that some- 
what lesser but still significant discrepancies are to be 
expected with the simplified correlations for liquid 
metals based on the limiting form for Pr + 0. A 
further variation in the dependence on Pr and Ra arises 
from the additive constant in equations (5) and (9). 
Thus empirical correlations of the form: 

Nu = CRa”P@ (10) 

cannot be expected to be successful over an extended 
range of Ra or Pr. Instead, the deviations from the 
correlations in the literature must be due in part to 
the choice of tb:- form rather ths.n wholly to experi- 
mental error. Such correlations appear to have outlived 
their usefulness. 

Equation (9) provides a smooth transition from the 
laminar to the turbulent regime whereas the actual 
transition is known to be essentially discrete. The 
representation provided by equation (9) for this region 
is thus an oversimplification of reality and is numeri- 
cally successful only because the effect of the transition 
is dampened by the integration which leads from the 
local to the mean Nusselt number. A correlation for 
the local Nusselt number extending through the tran- 
sition from laminar to turbulent motion would need to 
be more complicated in structure than equation (9). 
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Table 1. Correction factor for various fluids from asymptotic behavior 

Go 
7.0 
0.70 
0,024 

0.004 

0 

oil 
water 

air 
mercury, 

50°F 
sodium, 
1200’F 

1.000 
0.978 
0.9 14 
0766 
0,436 

0.292 

cp{Prl 

1,000 
0.971 
0.887 
0.701 
0,331 

(0.492:Pr)’ 14.f (Pr) (0,492/Pr)“3q{Pr) 

0,259 0.165 
0.47 I 0366 
0.702 0.623 
0.928 0,905 

0.194 0,912 0.962 

1,000 1~000 

For large temperature differences such that the 

physical properties vary significantly, Ede [2] recom- 
mends that the physical properties be evaluated at the 
mean of the surface and the bulk temperature. Wylie 

[18] provides more detailed theoretical guidance for 
the laminar boundary-layer regime. 

UNIFORM HEAT FLUX 

The definition of the mean Nusselt number for 

uniform heating is somewhat arbitrary. However, 
Sparrow and Gregg [ 191 have shown that for a laminar 
boundary layer the use of the temperature difference 
at the midpoint of the plate yields values in better 
agreement with those for uniform wall temperature 

than the use of either the integrated mean temperature 
difference or the integrated mean heat-transfer co- 
efficient. With this definition the following expression 
can be derived from the empirical representation of 
Churchill and Ozoe [20] for the local heat-transfer 

coefficient for uniform heating in a laminar boundary 
layer. 

?i&i = 0.670Ra’!4/[1 + (0.437/Pr)g”6]4!g. (11) 

It may be noted that for Pr + co the coefficient of the 

Rayleigh number is indeed the same as that of equation 
(3) and that these expressions differ only by 
((0.492/0.437)‘/4- 1)lOO = 3 per cent even for Pr + 0. 
[Equation (11) can be converted to one for the inte- 

grated mean temperature difference by multiplying the 
coefficient 0.670 by (6/5)“‘“/2’!” giving 0.708 and to the 
one for the integrated mean heat-transfer coefficient by 
multiplying by (5/4)514/2’14 giving 0.745.1 

Neither experimental data nor theoretical results - 
appear to provide a limiting value of Nu for Ra + 0. 
Hence the same value as for uniform wall temperature 
will arbitrarily be used. The exponent in equation (1) 
has generally been found to be the same for similar 
processes as illustrated by comparison of equations (3) 
and (11). Hence in the absence of experimental data 
the following expression is proposed for the entire 
laminar regime with uniform heating : 

0670Ra”4 
N” = 06* + [1 + (o.437/pr)W’6]W (12) 

An equation of the form of equation (6) would be 
expected to hold for uniform heating as well as uniform 
wall temperature. Combining equation (6) with 

NuO = 0.68, forcing the same relationship between Ra 
and Pr as in equation (11) and assuming that l/2 is 
again a satisfactory choice for n results in : 

A’/2Ra’!6 

NU1’2 = o’825 + [l +(o.437/pr)9!16]8/27 ’ (13) 

A plot of a random selection from the limited sets of 
experimental data for uniform heating [21-241, in 

Fig. 3 in the form suggested by equation (13) again 
yields a value of A = 0.15, producing the following 
correlation for uniform heating for all Ra and Pr : 

NU”2 = 0.825 +. 
0.387Ra’!’ 

[I + (0.437/pr)W’6]8/27 (14) 

Churchill [14] has asserted that Nu for fully 
developed turbulent motion (Ra -+ CD) should be the 
same for uniform heating as for wall temperature if a 
value independent of z, corresponding to a pro- 
portionality of Nu to Ra ‘I3 is attained. This assertion 
is tested by plotting equation (9) for Pr = 0.70 in Fig. 3. 

Good agreement with the data may be noted as would 
be expected since equations (9) and (14) differ only 
slightly in one coefficient. 

Free convection with uniform heating is often cor- 

related in terms of Ra* in order to avoid explicit 
inclusion of the surface temperature. Equations (ll), 
(12) and (14) can be rewritten in terms of Ra* simply - 
by replacing T, - Tb with q/h, hence Ra with Ra*/Nu. 
However, this re-expression disguises the important 
result that the dependence of Nu on Ra is essentially 

the same as for uniform wall temperature. 

INCLINED SURFACES 

Vliet [25] has reviewed prior results for inclined 
surfaces and presented additional results for uniform 
heating. He concludes that for the laminar regime the 
solutions and correlations for a vertical plate may be 
used for a plate inclined up to at least 60” from the 
vertical if the component of gravity parallel to the 
surface is used in the Rayleigh number. However, the 
Rayleigh number for transition from laminar to tur- 
bulent motion is decreased drastically as the angle of 
inclination from the vertical is increased and his local 
results for the turbulent regime were better correlated 
in terms of g than in terms of g sin cp, 
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FIG. 3. Comparison of correlating equations with experimental data for uniformly heated, vertical plates. 

MASS TRANSFER 
- 

Equations (5) and (9) with % substituted for Nu, 
SC for Pr, and Ra’ for Ra are expected to hold for 
mass transfer as long as the net rate of mass transfer 
is not so high as to affect the velocity field significantly. 
Representative mass-transfer data [26] are included in 
Fig. 2 and reasonable agreement with equations (5) and 
(9) is apparent. 

SIMULTANEOUS HEAT AND MASS TRANSFER 

On the basis of the results of Saville and Churchill 
[27] and Lightfoot [28] for mass transfer due to a 
temperature gradient only (a(ws -wb)/fl( T, - &) + 0 - 
and Pr/Sc -+ 0) % can be substituted for Nu and 
Ra(Sc/Pr)4’3 for Ra in equation (9). 

Also, on the basis of the results of Saville and 
Churchill [27] for simultaneous heat and mass transfer, 
Nu and Sh can be calculated from equation (9) for the 
special case of SC = Pr merely by substituting Ra + Ra’ 
for Ra. For SC # Pr, the asymptotic solutions are not 
explicit and simple substitution in equation (9) is not 
possible [29]. 

NON-NEWTONIAN FLUIDS 

For a power-law fluid such that: 

du m-1 du 
t=-K- -. I I dy dy 

Acrivos [30] has derived for Pr + co the following 
generalized form of equation (2): 

Zmfl l/(3,+1) 

Nu = F{M} 
> 

(16) 

where F { m> is a weak function of m and F { l.O} = @670. 
Equation (16) has been confirmed as a good rep- 
resentation for a number of fluids with 0.6 < m < 1.0 
by Agarwal et al. [30] for uniform wall temperature, 
and the analogue of equation (16) for uniform heating 
with 0.4 < M < 1.0 by Chen and Wollersheim [32]. It 
follows that equation (5) with f{Pr} = 1 and equation 

(9) with cp{ Pr} = 1 should be applicable for such fluids 
if (p/l(T,- ~)zzm+1/Kam)413m+1 is susbsituted for Ra. 

Fujii et al. [33] have obtained numerical solutions 
for a Sutterby fluid at finite Pr, and experimental results 
for aqueous solutions of polyethylene oxide. Their 
results indicate that Acrivos’ solution may be a reason- 
able approximation for real fluids if the coefficients K 
and m are evaluated at the shear stress at the midheight 
of the heated plate. 

CONCLUSIONS 

1. Equation (9) based on the model of Churchill and 
Usagi provides a good representation for the mean 
heat transfer for free convection from an isothermal 
vertical plate over a complete range of Ra and Pr from 
0 to 00 even though it fails to indicate a discrete 
transition from laminar to turbulent flow. 

2. Equation (14) provides an equivalent represen- 
tation for heat transfer by free convection from a 
uniformly heated vertical plate. However, equation (9) 
is also an adequate representation for this boundary 
condition. 

3. Equation (9) is applicable to mass transfer with 
a, Ra’ and SC substituted for Nu, Ra and Pr and can 
be applied for simultaneous heat and mass transfer for 
the special case of Pr = SC if Ra+ Ra’ is substituted 
for Ra. Other such extensions are also possible. 

4. More accurate representations for the laminar 
regime are provided by equations (5) and (12) and these 
simpler expressions should be used rather than equa- 
tions (9) and (14) for Ra < 109. The expressions for the 
laminar regime are also applicable to mass transfer 
and simultaneous heat and mass transfer with the 
indicated substitutions. 

5. Equations (5) and (12) are proposed as tentative 
representations for laminar convection from plates 
inclined up to at least 60” from the vertical if gsincp 
is substituted for g. Based on the results of Vliet [25], 
equations (9) and (14) may be applicable for the tur- 
bulent regime without this modification. Fortunately 
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these equations are quite insensitive to the point of 15. R. L. C. Bosworth, Heat Transfer Phenomena, p. 101. 
transition from laminar to turbulent motion. Wiley, New York (1952). 

6. Equations (9) with Pr -+ cg is applicable to non- 16. F. .I. Bayley, An analysis of turbulent free convection 

Newtonian fluids whose behavior can be represented 
heat transfer, Proc. Instn Mech. Engrs 169(20), 361-370 
(1955) 

by a power-law if (pg~(T,-~)~~~+‘~l<~l~)~~~~” is 17, 
used for Ra. 

7. The principal uncertainty in the correlations pro- 18. 

posed herein arises from the uncertainty in the limiting 
solutions and experimental data for Ru -+ 0 and a. 19. 

8. General correlations of the simple power-law type 

such as equation (10) are seen to be fundamentally 
unsound for any extended range of the variables and 20. 

their use is no longer justified. 
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LOIS DE CORRELATION EN CONVECTION NATURELLE LAMINAIRE 
ET TURBULENTE SUR UNE PLAQUE VERTICALE 

Resume-Une expression simple pour le nombre de Nusselt (ou de Sherwood) moyen est obtenue g I’aide 
du modble de Churchill et Usagi pour tout nombre de Rayleigh et de Prandtl (ou de Schmidt). Au tours 
des dheloppements il est fait usage de valeurs experimentales du nombre de Rayleigh tendant vers zero 
ou vers l’infini et de solutions theoriques obtenues en theorie de la couche limite laminaire. L’expression 
est applicable au transfert thermique a flux constant aussi bien qu’a temperature constante ainsi qu’au 
transfert de masse et au transfert simultant de chaleur et de masse. La loi de correlation fournit une 
base de calcul des taux de transfert pour des fluides non newtoniens et pour des plaques inclinbs. Des 
expressions tout aussi simples sont developpees pour des domaines limit& correspondant a des conditions 
particulitres. Les expressions d’application gtntrale et d’apphcation restreinte sont cornpar& aux 



Laminar and turbulent free convection from a vertical plate 1329 

don&s experimentales representatives. La structure de l’equation de correlation fait apparaitre la 
raison pour laquelle les lois habituelles de type puissance ne peuvent s’appliquer sur un domaine itendu 

de nombres de Rayleigh et de Prandtl. 

KORRELATIONEN FUR LAMINARE UND TURBULENTE FREIE KONVEKTION 
AN EINER SENKRECHTEN PLATTE 

Zusammeofassung-Nach einem Mode11 von Churchill und Usagi wurde eine einfache Beziehung fiir 
mittlere N&Zahlen (oder Sh) fur alle Ra und Pr (oder SC) entwickelt. Es sind dazu experimentelle Werte 
fiir Ra die gegen Null und unendlich gehen herangezogen und theoretische Losungen, wie sie aus der 
Gre~schichttheorie erhalten werden. Die Beziehung ist anwendbar fur gleichf~rmige Heizung, einheitliche 
Wandtemperatur, fur Stoff~~rgang und gle~c~eitigen Warme- und Stoff~berg~g. Die Korrelation 
vermittelt eine Grundlage zur Bestimmung des Ubergangs bei nichtnewtonischen Fliissigkeiten und fiir 
geneigte Platten. Fur bestimmte Anwendungsbereiche werden einfachere Beziehungen angegeben. Die 
allgemeine Gleichung und die spezielle Beziehung werden vergliechen mit reprlsentativen experimentellen 
Daten. Die Struktur der Korrelationsbeziehung gibt Aufschlug tiber das Versagen der allgemeinen 

Exponential-Gleichungen fiir einen ausgedehnten Bereich von Ra und Pr. 

KOPPEJDIHMOHHbIE YPABHEHWX p;JDI OIIHCAHHX JIAMHHAPHOfi I4 
TYPBYJIEHTHOH CBOSOJIHOH KOHBEKI&IH OKOJIO BEPTMKAJIbHOH 

IIJIACTMHbI 

A~~oxauuwn-C ffOMOwbH) Moxem qepY@nns li Y3arK UonyseHo npoc~oe. BbrpameHEie Ens# ocpen- 
HeHHOrO n0 ISpOCTpaHCTBy 3HalfeHEiII WiC3Ia NU (WJIII &‘k) IIPH m&AX 3HWEHHlX %iC.W Ru H Pr (Sinu 
.!?C). npS BblBOAe ~C~O~b3O~~~Cb 3K~Uep~Me~T~bHble AaHHble AJGI YHCna Ra, CTpeMKElerOCR K 

Uynso ~GecKo~e~~ocT~,ua~a~nT~~ecK~e~~~eUu~,nony~eHHbieHaocwoseTeopuena~u~ap~oro 

lTOI'paHWiHOI'OCJI0~. BbIpameHHenpHMeHHMO KC~~Y~~~MIIOCTO~HHO~OT~U~OBO~OIIOTOK~,I~OCTOSIH- 

I-IO&i TeMllepaTypbI CTeHKH, a TBK)Ke AJIK OUllCaHWII IIpOUeCCOB MaCCOO6MeHa II OAHOBpeHeMHOrO 

TeUnO-AM~CCOotiMeHa.Koppen~ull~AaeTB03MOWCHOCTb~aCCY~TaTbCKO~OCT~~e~HOCaBHeHbH)TO- 

HOCKBX XWAXOCTIlX EI BCny'iae HaKJlOHHblXUnaCTHH. AHanOWfHble,HO 6onee UpOCTble BblpNKeHWI 
IlOJIy'ieHbI AJIX OrpaH~YeHHbIX .LWZU’Iil30HOB yCjrOBHkO&UeeIi YaCTHbIeBblpaXeHHSl CpaBHHBS-OTCS 

Ha AOCTOBepHblX 3KCUep~MeHT~bH~X AaHHbIX. CTpyKTypa KOpp~~U~OHHOrO ypaB~eH~X UO- 

3BOEieT o6WfCeUTb TOT @KT, ITO'ieMy 06bIYHbIe ypaBHeHH5I THila CTeIIeHHblX 3aBACWMOCTeZt He 

MoryTyCneUrHo npeMeHaTbca npu 6onbmux AHanasoHax 3Havemifi Ra zipr. 


