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Abstract—A simple expression is developed for the space-mean Nu (or Sh) for all Ra and Pr (or Sc)
in terms of the model of Churchill and Usagi. The development utilizes experimental values for Ra
approaching zero and infinity, and the theoretical solutions obtained from laminar boundary-layer
theory. The expression is applicable to uniform heating as well as to uniform wall temperature and for
mass transfer and simultaneous heat and mass transfer. The correlation provides a basis for estimating
transfer rates for non-Newtonian fluids and for inclined plates. Even simpler expressions are developed
for restricted ranges of conditions. The general and restricted expressions are compared with representative
experimental data. The structure of the correlating equation shows why the common power-law-type
equations cannot be successful over an extended range of Ra and Pr.

NOMENCLATURE
a, arbitrary exponent;
A, dimensionless coefficient;
b, arbitrary exponent
c, dimensionless coefficient;
2,  diffusivity [m?/s];

f{Pr}, dimensionless function of Pr in
equation (2);

F{m}, dimensionless function of power-law
coefficient in equation (16);

g, acceleration due to gravity [m/s?];

h, local heat-transfer coefficient [J/m?.s.°K];

h, mean heat-transfer coefficient over 0~z
[I/m?.s.°K];

k, thermal conductivity [J/m.s.°K];

Kk, local mass-transfer coefficient [s~'];

k, mean mass-transfer coefficient over 0-z
'L

K, coefficient defined by equation (15)
[kg/m-s>™];

m, exponent defined by equation (15);

n, exponent in equation (1);

Nu,  hz/k, local Nusselt number at z;

Nu, hz/k, mean Nusselt number over 0-z;

Pr, v/a, Prandtl number;

q heat flux density [J/m?-s];

Ra,  gB(T,— T;)z3/ve, Rayleigh number;

Rd, gy(w,—w,)z®/v®, Rayleigh number for mass
transfer;

gBqz*/kva, modified Rayleigh number based
on heat flux density;

Sc, v/9, Schmidt number;

Sh,  k'z/9, local Sherwood number;

Sh, Kz/2, mean Sherwood number over 0—z;

T, temperature [°K];

X, independent variable [m];
¥ dependent variable [m];
z, distance up plate {m].

Greek symbols

a, thermal diffusivity [m?/s];

B, thermal coefficient of expansion [°K™'];

¥, dimensionless coefficient for expansion due
to change in composition;

, mass fraction;

v, kinematic viscosity [m?/s];

@{Pr}, dimensionless function of Pr in
equation (8);

0, angle of inclination of the plate from the
vertical; '

T, shear stress [kg/m-s?].

Subscripts

b, bulk;

s, surface;

0, limiting behavior for small z;

0, limiting behavior for large z.

INTRODUCTION

A VARIETY of theoretical expressions, graphical cor-
relations and empirical equations have been developed
to represent the coefficients for heat and mass transfer
by free convection from vertical plates. However, the
discrepancies between the expressions proposed for
correlation and the various sets of experimental data
have still not been completely resolved or explained.
The experimental anomalies are apparently due in part
to physical property variations and undefined differ-
ences in the environment. The theoretical results are
mostly limited to the intermediate range of Rayleigh
number for which the postulates of laminar boundary-
layer theory are applicable; a completely satisfactory
theory has not been developed for either the diffusive
regime (low Rayleigh numbers) or the turbulent regime
(high Rayleigh numbers). The primary shortcoming of
the empirical correlations is their failure to take into
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proper account the varying dependence on the Rayleigh
and Prandil (or Schmidt) numbers,

This paper presents simple but very general cor-
relations for the space-mean value of the transfer rate
for free convection. The correlations are developed
wholly in terms of the model of Churchill and
Usagi[1]:

vz} = vz} + % iz} {1

and thus require appropriate expressions for the limit-
ing behavior for both large and small values of the
independent variable z.

Ede [ 2] provides a thorough review of the literature
for heat transfer through 1964. In the interest of brevity,
correlations, theoretical solutions and experimental
data since that date will not be reviewed or analyzed
except insofar as they are directly relevant to the
derivations herein. The correlation is first developed
in terms of heat transfer from an isothermal plate.
Uniform heating, mass transfer, simultaneous heat and
mass transfer, non-Newtonian fluids and inclined plates
are subsequently considered.

LAMINAR REGIME

Boundary-layer theory has been utilized to derive
relationships of the form:

Nu = Ra''*f{Pr} @

where f{Pr} represents a tabulation of values such as
those summarized by Ede [2] for a number of values
of Pr. Churchill and Usagi [1] derived an empirical
expression in the form of equation (1) to provide a
continuous approximation for these tabulated values
of f{Pr}. This expression can be rewritten as follows
in terms of Nu:

Nu = 0-670Ra"*/[ 1+ (0-492/Pr)11%°,  (3)

Equation (3) represents the various computed values
within 1 per cent from Pr=0 to Pr= oo and is in
general agreement for 10° < Ra < 10% with the widely
scattered experimental values compiled by Ede [2].

Equation (2) and hence equation (3) would be
expected to become invalid for Ra > 10° owing to the
onset of turbulence and as Ra — 0 owing to thickening
of the boundary layer relative to the distance from the
starting edge of the plate. A generally accepted solution
has not been derived for this latter regime. For pure
conduction {Ra = 0} from an infinite strip Nu = 0, but
for a plate of finite dimensions Nu has a finite value.
The experimental data of Saunders [ 5] indicate a limit-
ing value of approximately 0-68, probably due to edge
effects,

Utilizing 0-68 for yo {z} and the right side of equation
(3) for y.{z} in equation (1} yields the following test
expression for the entire laminar regime;

— O670Ra* Y
" P " ., 4
Nu = 0687+ ({1 + 0492/ 16]4(‘9) @

A test plot of representative experimental data [2-13]
in the form proposed by Churchill and Usagi [1]
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indicates that n = | is a reasonable choice, yielding

. 0-670Ra*"*
Nu = 068 . (5
“ 15 ©492/PnTe )
Equation (5 is seen in Fig. | to provide a good
representation for all Ra < 10° while equation (3) is
seen to be increasingly in error for Ra < 10°.

LAMINAR PLUS TURBULENT REGIME
An asymptotic solution is not available for Ra — oo,
but Churchill [ 14] has asserted on the basis of dimen-
sional analysis that

Nu — ARa'Bp{Pr} (6)

where 4 is an empirical constant and @{Pr} is a
function which approaches unity for Pr— oo and is
proportional to Pr'/® for Pr — 0. Equations {5) and (6)
could be combined in the form of equation (1) to obtain
a test expression for all Ra and Pr. However the
limiting value of 0-68 proves to combine with equation
{6) to produce a simpler and equally successful cor-
relation. The resuliting test expression is

Nu" = 068"+ [ARa' g {Pr}]". (N

Equation (7) provides a dependence of Nu on Ra for
any positive n which increases continuously from the
zeroth power to the 1/3-power as Ra increases. If
equation (7) is to provide the same interrelationship
between Ra and Fr in the laminar boundary-layer
regime as equation (5) it is necessary that:

@{Pr} = ([1+{0-492/Pr)>116]~ 4933
= [1+4(0-492/P)®/16]718727  (8)

The expression resulting from insertion of equation (8}
in {7} also conforms to the asserted dependence for
Pr—0and oo as Ra - <o,

Bosworth [15] proposed an equation of the form of
equation (7) with ¢{Pr} = 1-0 and n = 1,2 for Nu for
free convection from horizontal cylinders in air. Trial
plots indicate that n == 1/2 is a reasonable choice for
the vertical plate as well. The straight line with a slope
of 1/6 drawn in Fig. 2 through the same representative
data as in Fig. 1 vields a value of 4 = 0-150 and hence
the final correlation:

0-387Ra*’®

Nul? = 0825 N |
u 825+ [1+ (()-492/};}.)9“6] EYX] )

This value of 4 is in reasonable accord with the value
of Ap{Pr} = 010, hence 4 = (-12, derived by Bayley
[16] for air and also with the value of 0-13 proposed
by Kutateladze [17] for a correlation in the form of
equation (6) for turbulent free convection from vertical
plates, cylinders and spheres to a number of fluids.

Equations (3) and (5) are plotted also in Fig. 2 for
comparison and to indicate their limits of applicability.
The undoubted superiority of equation (9) for Ra > 19°
is somewhat obscured by the lack of data for truly high
Ra, the scatter of the available data and the very con-
densed scale of the ordinate.
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FiG. 2. Comparison of correlating equations with experimental data for isothermal, vertical plates.

INTERPRETATION

Computed values of f{Pr} and ¢{Pr} for rep-
resentative fluids are given in Table 1. The significant
deviations for air and water from the limiting depen-
dence for Pr— o indicate why the customary em-
pirical equations of the form of equation (2) with
f{Pr} = 1-0 and equation (6) with ¢{Pr} = 1-0 have
not proven satisfactory for a variety of fluids with a
wide range of Pr. Table 1 also indicates that some-
what lesser but still significant discrepancies are to be
expected with the simplified correlations for liquid
metals based on the limiting form for Pr—0. A
further variation in the dependence on Pr and Ra arises
from the additive constant in equations (5) and (9).
Thus empirical correlations of the form:

Nu = CRa*P¥ (10)

cannot be expected to be successful over an extended
range of Ra or Pr. Instead, the deviations from the
correlations in the literature must be due in part to
the choice of th~ form rather than wholly to experi-
mental error. Such correlations appear to have outlived
their usefulness.

Equation (9) provides a smooth transition from the
laminar to the turbulent regime whereas the actual
transition is known to be essentially discrete. The
representation provided by equation (9) for this region
is thus an oversimplification of reality and is numeri-
cally successful only because the effect of the transition
is dampened by the integration which leads from the
local to the mean Nusselt number. A correlation for
the local Nusselt number extending through the tran-
sition from laminar to turbulent motion would need to
be more complicated in structure than equation (9).
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Table 1. Correction factor for various fluids from asymptotic behavior

Pr Fluid /1 Pr) @!{Pr) (0-492/Pry!'*f{Pri  (0-492/Pr)'3¢{Pr!
« 1-000 1-000
100 oil 0978 0971 0-259 0-165
70 water 0914 0-887 0471 0366
070 air 0-766 0701 0702 0-623
0024 mercury, 0-436 0-331 0928 0905
S0°F
0-004 sodium, 0-292 0-194 0912 0962
1200°F

0 1-000 1-000

For large temperature differences such that the
physical properties vary significantly, Ede [2] recom-
mends that the physical properties be evaluated at the
mean of the surface and the bulk temperature. Wylie
[18] provides more detailed theoretical guidance for
the laminar boundary-layer regime.

UNIFORM HEAT FLUX

The definition of the mean Nusselt number for
uniform heating is somewhat arbitrary. However,
Sparrow and Gregg [ 19] have shown that for a laminar
boundary layer the use of the temperature difference
at the midpoint of the plate yields values in better
agreement with those for uniform wall temperature
than the use of either the integrated mean temperature
difference or the integrated mean heat-transfer co-
efficient. With this definition the following expression
can be derived from the empirical representation of
Churchill and Ozoe [20] for the local heat-transfer
coefficient for uniform heating in a laminar boundary
layer.

Nu = 0-670Ra' /[ 1+ (0-437/Pr)'16]%°.  (11)

It may be noted that for Pr — oo the coefficient of the
Rayleigh number is indeed the same as that of equation
(3) and that these expressions differ only by
((0-492/0-437)1/*— 1)100 = 3 per cent even for Pr —0.
[Equation (11) can be converted to one for the inte-
grated mean temperature difference by multiplying the
coefficient 0-670 by (6/5)%/#/2!/* giving 0-708 and to the
one for the integrated mean heat-transfer coefficient by
multiplying by (5/4)4/2*/* giving 0-745.]

Neither experimental data nor theoretical results
appear to provide a limiting value of Nu for Ra — 0.
Hence the same value as for uniform wall temperature
will arbitrarily be used. The exponent in equation (1)
has generally been found to be the same for similar
processes as illustrated by comparison of equations (3)
and (11). Hence in the absence of experimental data
the following expression is proposed for the entire
laminar regime with uniform heating:

0-670Ra'/*
[14(0-437/Pr)>116]45"
An equation of the form of equation (6) would be

expected to hold for uniform heating as well as uniform
wall temperature. Combining equation (6) with

Nu = 068 +

(12)

Nugy = 0-68, forcing the same relationship between Ra
and Pr as in equation (11) and assuming that 1/2 is
again a satisfactory choice for n results in:

Al/lRal/b

Nu''2 = 0825 .
‘ 1+ (0437 PO ]

(13)

A plot of a random selection from the limited sets of
experimental data for uniform heating [21-24], in
Fig. 3 in the form suggested by equation (13) again
yields a value of 4 = 0-15, producing the following
correlation for uniform heating for all Ra and Pr:

0-387Ra'’®

Nu'? = 0825 .
“ T[T+ ©0437/PrPie e

(14)

Churchill [14] has asserted that Nu for fully
developed turbulent motion (Ra — «c) should be the
same for uniform heating as for wall temperature if a
value independent of z, corresponding to a pro-
portionality of Nu to Ra'’? is attained. This assertion
is tested by plotting equation (9) for Pr = 0-70 in Fig. 3.
Good agreement with the data may be noted as would
be expected since equations (9) and (14) differ only
slightly in one coefficient.

Free convection with uniform heating is often cor-
related in terms of Ra* in order to avoid explicit
inclusion of the surface temperature. Equations (11),
(12) and (14) can be rewritten in terms of Ra* simply
by replacing T, — T, with g/h, hence Ra with Ra*/Nu.
However, this re-expression disguises the important
result that the dependence of Nu on Ra is essentially
the same as for uniform wall temperature.

INCLINED SURFACES

Viiet [25] has reviewed prior results for inclined
surfaces and presented additional results for uniform
heating. He concludes that for the laminar regime the
solutions and correlations for a vertical plate may be
used for a plate inclined up to at least 60° from the
vertical if the component of gravity parallel to the
surface is used in the Rayleigh number. However, the
Rayleigh number for transition from laminar to tur-
bulent motion is decreased drastically as the angle of
inclination from the vertical is increased and his local
results for the turbulent regime were better correlated
in terms of g than in terms of g sin ¢.
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F1G. 3. Comparison of correlating equations with experimental data for uniformly heated, vertical plates.

MASS TRANSFER

Equations (5) and (9) with Sh substituted for Nu,
Sc for Pr, and Ra’ for Ra are expected to hold for
mass transfer as long as the net rate of mass transfer
is not so high as to affect the velocity field significantly.
Representative mass-transfer data [26] are included in
Fig. 2 and reasonable agreement with equations (5) and
(9) is apparent.

SIMULTANEOUS HEAT AND MASS TRANSFER

On the basis of the results of Saville and Churchill
[27] and Lightfoot [28] for mass transfer due to a
temperature gradient only (t(w,—wy)/B(T,— T;) =0
and Pr/Sc —0) Sh can be substituted for Nu and
Ra(Sc/Pr)*? for Ra in equation (9).

Also, on the basis of the results of Saville and
Churchill [27] for simultaneous heat and mass transfer,
Nu and Sh can be calculated from equation (9) for the
special case of Sc = Pr merely by substituting Ra+ Ra’
for Ra. For Sc # Pr, the asymptotic solutions are not
explicit and simple substitution in equation (9) is not
possible [29].

NON-NEWTONIAN FLUIDS
For a power-law fluid such that:
dul™ ! du
dy| dy’
Acrivos [30] has derived for Pr— oo the following
generalized form of equation (2):

T__T 2m+1\ 1/(3m+1)
Nu = F{m} (%) (16)

where F {m} is a weak function of mand F{1-0} = 0-670.
Equation (16) has been confirmed as a good rep-
resentation for a number of fluids with 0-6 <m < 1-0
by Agarwal et al. [30] for uniform wall temperature,
and the analogue of equation (16) for uniform heating
with 0-4 < m < 1-0 by Chen and Wollersheim [32]. It
follows that equation (5) with f{Pr} = 1 and equation

T= —

(15)

(9) with @{Pr} = 1 should be applicable for such fluids
if (pB(T,— Tp)z*™**/Ka™)**™*1 is susbsituted for Ra.

Fujii et al. [33] have obtained numerical solutions
for a Sutterby fluid at finite Pr, and experimental results
for aqueous solutions of polyethylene oxide. Their
results indicate that Acrivos’ solution may be a reason-
able approximation for real fluids if the coefficients K
and m are evaluated at the shear stress at the midheight
of the heated plate.

CONCLUSIONS

1. Equation (9) based on the model of Churchill and
Usagi provides a good representation for the mean
heat transfer for free convection from an isothermal
vertical plate over a complete range of Ra and Pr from
0 to oo even though it fails to indicate a discrete
transition from laminar to turbulent flow.

2. Equation (14) provides an equivalent represen-
tation for heat transfer by free convection from a
uniformly heated vertical plate. However, equation (9)
is also an adequate representation for this boundary
condition.

3. Equation (9) is applicable to mass transfer with
Sh, Ra’ and Sc substituted for Nu, Ra and Pr and can
be applied for simultaneous heat and mass transfer for
the special case of Pr = Sc if Ra+Ra’ is substituted
for Ra. Other such extensions are also possible.

4. More accurate representations for the laminar
regime are provided by equations (5) and (12) and these
simpler expressions should be used rather than equa-
tions (9) and (14) for Ra < 10°. The expressions for the
laminar regime are also applicable to mass transfer
and simultaneous heat and mass transfer with the
indicated substitutions.

5. Equations (5) and (12) are proposed as tentative
representations for laminar convection from plates
inclined up to at least 60° from the vertical if gsin¢
is substituted for g. Based on the results of Vliet [25],
equations (9) and (14) may be applicable for the tur-
bulent regime without this modification. Fortunately
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these equations are quite insensitive to the point of
transition from laminar to turbulent motion.

6. Equations (9) with Pr — oo is applicable to non-
Newtonian fluids whose behavior can be represented
by a power-law if (pgB(T.— T;)z*" "' /Koa™)*>™*! is
used for Ra.

7. The principal uncertainty in the correlations pro-
posed herein arises from the uncertainty in the limiting
solutions and experimental data for Ra — 0 and oc.

8. General correlations of the simple power-law type
such as equation (10) are seen to be fundamentally
unsound for any extended range of the variables and
their use is no longer justified.
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LOIS DE CORRELATION EN CONVECTION NATURELLE LAMINAIRE
ET TURBULENTE SUR UNE PLAQUE VERTICALE

Résumé— Une expression simple pour le nombre de Nusselt (ou de Sherwood) moyen est obtenue a l'aide
du modéle de Churchill et Usagi pour tout nombre de Rayleigh et de Prandtl (ou de Schmidt). Au cours
des développements il est fait usage de valeurs expérimentales du nombre de Rayleigh tendant vers zéro
ou vers I'infini et de solutjons théoriques obtenues en théorie de la couche limite laminaire. L’expression
est applicable au transfert thermique a flux constant aussi bien qu’a température constante ainsi qu'au
transfert de masse et au transfert simultané de chaleur et de masse. La loi de corrélation fournit une
base de calcul des taux de transfert pour des fluides non newtoniens et pour des plaques inclinées. Des
expressions tout aussi simples sont développées pour des domaines limités correspondant a des conditions
particuliéres. Les expressions d’application générale et d’application restreinte sont comparées aux
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données expérimentales représentatives. La structure de Péquation de corrélation fait apparaitre la
raison pour laquelle les lois habituelles de type puissance ne peuvent s’appliquer sur un domaine étendu
de nombres de Rayleigh et de Prandtl.

KORRELATIONEN FUR LAMINARE UND TURBULENTE FREIE KONVEKTION
AN EINER SENKRECHTEN PLATTE

Zusammenfassung —Nach einem Modell von Churchill und Usagi wurde eine einfache Beziehung fiir
mittlere Nu~Zahlen (oder Sh) fiir alle Ra und Pr (oder Sc) entwickelt. Es sind dazu experimentelle Werte
fiir Ra die gegen Null und unendlich gehen herangezogen und theoretische Ldsungen, wie sie aus der
Grenzschichttheorie erhalten werden, Die Bezichung ist anwendbar fiir gleichférmige Heizung, einheitliche
Wandtemperatur, fiir Stoffibergang und gleichzeitigen Wirme- und Stoffiibergang, Die Korrelation
vermittelt eine Grundlage zur Bestimmung des Ubergangs bei nichtnewtonischen Fliissigkeiten und fiir
geneigte Platten. Fiir bestimmte Anwendungsbereiche werden einfachere Beziehungen angegeben. Die
aligemeine Gleichung und die spezielle Beziehung werden vergliechen mit représentativen experimentellen
Daten. Die Struktur der Korrelationsbeziehung gibt AufschluB iiber das Versagen der allgemeinen
Exponential-Gleichungen fiir einen ausgedehnten Bereich von Ra und Pr.

KOPPEJISALMOHHBIE YPABHEHUA U1 OMUCAHUSA JTJAMUHAPHON U
TYPBYJIEHTHON CBOBOJAHOM KOHBEKLMH OKOJIO BEPTUKAJIBHOM
TIITACTHHBI

Awnorauus — C oMo Mojeni Yepudnng v Y3ard noiayyeHo NpocToe BRIDAKEHHE NI OCPEH-
HEHHOTO IO NPOCTPARCTBY 3Ha4ycHus yncna Nu (win Sh) npu moOsix 3navenusx yucen Ra ¥ Pr (unu
Sc). TIpu BLIBOJE HCTONB30BAIHCH IKCOEDHMEHTANbHbIE NaHHBIE s 4Mcna Ra, CTPEMSLIErocs K
Hy 10 B GECKOHEYHOCTH, # aHATHTHYECKHE DEIeHH, IONYYEHHbIE HA OCHOBE TEOPHM TaMMHAPDHOTO
MOTPAHHYHOT'O CJI0A. BbipaxkeHke NPUMEHHUMO K C1y4asaM MOCTOSHHOIO TEIUIOBOIO TIOTOKA, NOCTOSH-
HOA TeMmeparypbl CTEHKH, 4 TAKKE JJIs ONUCAHHSA NPOLECCOB MAccOOOMEHAa M OJHOBPEHEMHOrO
Temo- H maccoobMmena. Koppensuus qaeT BO3MOXHOCTE PACCYHTATb CKOPOCTH NIEPEHOCA B HEHBIOTO-
HOCKHX XHIKOCTAX M B C/ly4yac HAKIOHHBIX IJTACTHH. AHAJOTHYHbIE, HO 60Jiee TPOCTLIE BBIPAKEHHS
TIOAYYEHBI U1 OTPAHHYEHHEIX NHANA30HOB ycnosull, O0iee ¥ YaCTHHIE BRIPAXKEHHS CPABHUBAIOTCH
Ha AOCTOBEPHBIX 3KCICPHUMEHTANLHBIX HAHHBIX. CTIPYKTYPA KODDENSUMOHHOIC ypaBHEHHS NO-
3BO/IACT OOBACHHTE TOT (axT, noueMy OOLIYHBIE YDABHEHHA THIIA CTENEHHBIX 3aBHCHMOCTEH He
MOTYT YCTIEHIHO IIPUMEHATBCS IPH OONBIIHMX AMANa3oHax 3Havenuit Ra u Pr.
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